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 The emergence of the Internet of Things has 
created an abundance of small embedded devices. 
Many of these devices may be used for cognitive 
tasks such as face detection, speech recognition, 
image classification, activity monitoring, and so on. 
Learning algorithms such as deep neural networks 
(DNNs) give accurate results for cognitive tasks [1]. 
However, these embedded devices have limited 
resources and cannot run such resource-intensive 
algorithms. Instead, many of them send the data 
they collect to the cloud server for feature analysis. 
However, this is not desirable due to privacy con-
cerns, security concerns, and network resources. 
Thus, we need more efficient lightweight classifi-
ers in order to perform such cognitive tasks on the 
embedded systems.

Brain-inspired hyperdimensional (HD) comput-
ing can be used as a lightweight classifier to perform 
cognitive tasks on resource-limited systems [2]. HD 

computing is modeled after how the 
brain works, using patterns of neural  
activity instead of computational arithme-
tic. Past research utilized high-dimension 
vectors (D ≥ 10,000) called hypervectors 
to represent neural patterns. It showed 
that HD computing is capable of provid-
ing high-accuracy results for a variety of 

tasks such as language recognition, face detection, 
speech recognition, classification of time-series sig-
nals, and clustering [3]–[7]. Results are obtained at a 
much lower computational cost as compared to other 
learning algorithms.

HD computing performs the classification task 
after encoding all data points to high-dimensional 
space. The HD training happens by linearly com-
bining the encoded hypervectors and creating a 
hypervector representing each class. In inference, 
HD uses the same encoding module to map a test 
data point to high-dimensional space. Then the clas-
sification task checks the similarity of the encoded 
test hypervector with all pretrained class hypervec-
tors. This similarity check is the main HD computa-
tion during the inference; often done with a cosine, 
which involves a large number of costly multiplica-
tions, grows with the number of classes [8]. Given an 
application with k classes, inference requires k × D 
additions and multiplications to perform, where D 
is the hypervector dimension. Thus, this similarity 
check can be costly for embedded devices with 
limited resources.
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In this article, we propose a robust and efficient 
solution to reduce the computational complexity 
and cost of HD computing while maintaining com-
parable accuracy. The proposed HD framework 
exploits the mathematics in high-dimensional 
space in order to limit the number of classes 
checked upon inference, thus reducing the num-
ber of computations needed for query requests. 
We add a new layer before the primary HD layer to 
decide which subset of class hypervectors should 
be checked as possible classes for the output class. 
This reduces the number of additions and multi-
plications needed for inference. In addition, our 
framework removes the costly multiplication from 
the similarity check by quantizing the values in 
the trained HD model with the power of two val-
ues. Our approach integrates quantization with the 
training process in order to adapt the HD model to 
work with the quantized values. We have evaluated 
our proposed approach on three practical classi-
fication problems. Our evaluations show that the 
proposed design is 11.6× more energy efficient and 
8.3× faster as compared to the baseline HD, while 
providing similar classification accuracy.

Hyperdimensional computing
HD computing uses long vectors with dimension-

ality in the thousands [2]. There are many nearly 
orthogonal vectors in high-dimensional space. 
HD combines these hypervectors with well-defined 
vector operations while preserving most of their 
information. No component has more responsi-
bility to store any piece of information than any 
other component because hypervectors are holo-
graphic and (pseudo) random with independent 
and identically distributed (i.i.d.) components 
and full holistic representation. The mathematics 
governing the high-dimensional space computations 
enables HD to be easily applied to many different 
learning problems.

Figure 1 shows an overview of the structure of the 
HD model. HD consists of an encoder, trainer, and 
associative search block. The encoder maps data 
points into high-dimensional space. These hyper-
vectors are then combined in a trainer block to 
form class hypervectors, which are then stored in an 
associative search block. In inference, an input test 
data is encoded to high-dimensional space using the 
same encoder as the training module. The classifier 
uses cosine similarity to check the similarity of the 

encoded hypervector with all class hypervectors and 
find the most similar one.

Encoding
Consider a feature vector v = 〈v1,  ...  vn〉. The 

encoding module takes this n-dimensional vector 
and converts it into a D-dimensional hypervector 
(D >> n). The encoding is performed in three steps, 
which we describe in the following.

We use a set of precomputed level or base 
hypervectors to consider the impact of each fea-
ture value  [9]. To create these level hypervectors, 
we  compute the minimum and maximum feature 
values among all data points, vmin and vmax, then 
quantize the range of [vmin, vmax] into Q levels, 
L = {L1, … , LQ}. Each of these quantized scalars cor-
responds to a D-dimensional hypervector [9].

Once the base hypervectors are generated, each 
of the n elements of the vector v is independently 
quantized and mapped to one of the base hyper-
vectors. The result of this step is n different binary 
hypervectors, each of which is D -dimensional. 
In the last step, the n (binary) hypervectors are 
combined into a single D -dimensional (nonbi-
nary) hypervector. To differentiate the impact of 
each feature index, we devise ID hypervectors,  
{ID1, …  ,  IDn}. An ID hypervector has the bina-
rized dimensions, i.e., ​​ID​ i​​ ∈ ​​{0, 1}​​​ D​​. We create 
IDs with random binary values so that the ID 
hypervectors of different feature indexes are 
nearly orthogonal:

	​ δ​(I​D​ i​​ , I​D​ j​​)​ ≃ ​D⁄2​​ ​​ (i ≠ j & 0 < i,  j ≤ n)​​

where the similarity metric, ​δ​(I​D​ i​​ , I​D​ j​​)​​, is the Ham-
ming distance between the two ID hypervectors.

Figure 1. Overview of HD computing performing the 
classification task.
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The orthogonality of ID hypervectors is ensured 
as long as the hypervector dimensionality is large 
enough compared to the number of features in the 
original data point (D >> n). As Figure 1 shows, the 
aggregation of the n binary hypervectors is computed 
as follows:

	​ H = I​D​ 1​​ ⊕ ​​
_

 L​​ 1​​ + I​D​ 2​​ ⊕ ​​
_
 L​​ 2​​ + . . .  + I​D​ n​​ ⊕ ​​

_
 L​​ n​​​

where ⊕ is xor operation, H is the aggregation, and 
​​​
_

 L​​ i​​​​​ is the binary hypervector corresponding to the 
i th feature of vector v.

Classification in HD space
In HD, training is performed in high-dimensional 

space by elementwise addition of all encoded hyper-
vectors in each existing class. The result of training 
will be k hypervectors with D dimensions, where k 
is the number of classes. For example, the i th class 
hypervector can be computed as: ​​C​​ i​ = ​∑​​∀​ j∈clas ​s​ i​​ ​H​ j​​​.

In inference, HD uses encoding and associative 
search for classification. First, HD uses the same 
encoding module as the training module to map 
a test data point to a query hypervector. In HD 
space, the classification task then checks the similar-
ity of the query with all class hypervectors. The class 
with the highest similarity to the query is selected as 
the output class. Since in HD, information is stored 
as  the pattern of values, the cosine is a suitable 
metric for similarity check.

HD computing challenges
To understand the main bottleneck of HD 

computing during inference, we evaluate the HD 

inference on three practical classification applica-
tions, including speech recognition [10], activity 
recognition [11], and image recognition [12]. All 
evaluations are performed on Intel i7 7600 CPU 
with 16-GB memory. Our results show that the 
associative search takes about 83% of the total 
inference execution. This is because the cosine 
similarity has many multiplications between a 
query and the class hypervectors. Prior work tried 
to binarize the HD model after the training [3]. This 
method simplifies the cosine similarity to Hamming 
distance measurement, which can run faster and 
more efficiently in hardware. However, our evalua-
tion of three practical applications shows that bina-
rization reduces the classification accuracy of HD 
with integer model by 11.4% on an average. This 
large accuracy drop forces HD to use cosine simi-
larity which has a significant cost when running on 
embedded devices.

HD computing acceleration
In this article, we propose three optimiza-

tion methods that reduce the cost of associative 
search during inference by at least an order of 
magnitude. Figure 2 shows an overview of the 
proposed optimizations. The first approach sim-
plifies the cosine similarity calculations to dot 
products between the query and class hypervec-
tors. The second reduces the number of required 
operations in the associative search by adding a 
category layer to HD computing which decides 
what subset of class hypervectors needs to be 
checked for the output class. The third removes 
the costly multiplications from the similarity 

Figure 2. Overview of proposed optimization approaches to improve the efficiency of associative search.
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check by quantizing the HD model after train-
ing. In the following subsections, we explain the 
details of each proposed approach.

Similarity check: Cosine or dot product?
During inference, HD computation encodes 

input data to a query hypervector, H = {hD, .   .   .   , h2, h1}. 
Associative memory then measures the cosine sim-
ilarity of this query with k stored class hypervec-
tors {C1, .   .   .     , Ck}, where Ci = ​​{​c​ D​ i ​, .   .   .   , ​ c​ 2​ i ​, ​ c​ 1​ i ​}​​ is the 
class hypervector corresponding to the i th class  
(Figure 2a). The cosine similarity can be expressed 
as δ = H ⋅ ​C​​ i​ ⁄ ​​|H|​​ ​​|Ci|​​, where ​H ⋅ ​C​​ i​​ indicates the dot 
product between the hypervectors, and ​​|H|​ = H ⋅ H​ 
and ​​|Ci|​ = ​C​​ i​ ⋅ ​C​​ i​​ show the magnitudes of the query 
and class hypervector. However, it is very expen-
sive to calculate the operand magnitude every 
time. During the similarity check, the query hyper-
vector is common between all classes. Thus, we 
can skip the calculation of the query magnitude, 
since the goal of HD is to find the maximum rela-
tive similarity, and not the exact cosine values. On 
the other hand, as shown in Figure 2b, the magni-
tude of each class hypervector can be computed 
once after the training. Therefore, the associative 
search can store the normalized class hypervec-
tors (​​C​​ i​ ⁄  ​|Ci|​​ for ​i ∈ 1,   …  ,  k).​ This speeds up the 
similarity at inference by about 3× as compared 
to cosine.

Two level search
Although the dot product reduces the cost of the 

associative search, this similarity check still involves 
many computations. For example, for an application 
with k classes, associative search computes k  ×  D 
multiplication/addition operations, where D is the 
hypervector dimension. In addition, in existing HD 
computing approaches [3], [9], the cost of associ-
ative search increases linearly with the number of 
classes. For example, speech recognition with k = 26 
classes has 13× more computations and 5.2× slower 
inference as compared to face detection with k = 2 
classes. Since embedded devices often do not have 
enough memory and computing resources, process-
ing HD applications with large numbers of classes is 
more inefficient.

We propose a method that has a two-layer clas-
sification: category and main stages. Figure  2c 
shows an overview of the proposed approach. 
First, we group the trained class hypervectors into 

k/m  categories based on their similarity, where k 
and m are the number of classes and group size, 
respectively. For example, m = 2 indicates that 
we group every two class hypervectors into a sin-
gle hypervector. Next, we build a new HD model, 
called category stage, which stores all k/m group 
hypervectors. Instead of searching k hypervectors 
to classify a data point, we first search the category 
stage to identify the group of classes that the query 
belongs to (among k/m group hypervectors). After-
ward, we continue the search in the main HD stage, 
but only with the class hypervectors corresponding 
to the selected group.

Quantization
Although grouping the class hypervectors 

reduces the number of computations, the dot prod-
uct similarity check still has many costly multipli-
cations. In this work, we propose a method which 
removes the majority of the multiplications from the 
HD similarity check. After training the HD model, 
we quantize each class value to the closest power of 
two (2i, ​i ∈ ). ​This eliminates the multiplication by 
allowing bit shift operations. However, this quan-
tization is not error free. For example, the closest 
power of two for the number 46 would be either 32 
or 64. Both of these numbers are far from the actual 
value. This approximation can add large errors to 
HD computing. The amount of error depends on the 
number of classes and how similar the classes are. 
For applications with many classes or highly corre-
lated class hypervectors, this quantization can have 
a large impact on the classification accuracy.

In this article, we look at the possibility of per-
forming a more precise but lower power quanti-
zation approach (Figure 2d). Our method assigns 
each class element to a combination of two power 
of two values (2i + 2j, ​i & j ∈ ​). This quantization 
can assign each trained class element to a value 
which is much closer to the actual element. For 
example, using this approach, the number 46 can 
be assigned to 48 = 25 + 24, which is very close to 
the actual value. This enables more precise quanti-
zation with correspondingly lower impact on accu-
racy. This strategy implements multiplication using 
two shifts and a single add operation, which is still 
faster and more efficient than the actual multipli-
cation. After training the HD model, we assign the 
class elements in both category and main stages to 
the closest quantized value.
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Since class hypervectors are highly correlated, 
even this quantization can have a large impact 
on the classification accuracy. Quantization intro-
duces this quality loss because the HD model is not 
trained to work with the quantized values. In order 
to ensure a minimum quality loss, we integrate 
quantization with the HD model retraining. This 
enables the HD model to learn how to work with 
quantized values. In the algorithm explained in the 
“Training and inference in the proposed design” 
section, after getting a new adjusted model, we 
quantize all hypervector values in the category and 
main stages. This approach reduces the possible 
quality loss due to quantization. In the “Accuracy” 
section, we discuss the impact of quantization on 
HD classification accuracy.

Training and inference in the proposed design
Training: Figure 2 shows the training process of 

HD with grouped hypervectors.  We first train a nor-
mal HD computing model, where each hypervec-
tor represents an existing class (Figure 2a). Next, 
we normalize the class hypervectors (Figure 2b) 
and then check the similarity of the trained class 
hypervectors in order to group the classes. In our 
approach, we group every m class hypervector 
into a single hypervector, and as a result, we have 
k/m group hypervectors (Figure 2c). The grouping 
is done by checking the similarity of class hyper-
vectors in pairs and classes were merged with the 
highest similarity. The selected class hypervectors 
are added together to generate a group hypervec-
tor. We store these k/m group hypervectors into the 
category stage. Then, we quantize the values of the 
grouped model (Figure 2d). This one-shot trained 
model can be used to perform the classification 
task at inference.

Model adjustment: To get better classification 
accuracy, we can adjust the HD model with the 
training data set for a few iterations (Figure 2e). The 
model adjustment starts in the main HD stage. During 
a single iteration, HD checks the similarity of all train-
ing data points, say H, with the current HD model.  
If data are wrongly classified by the model, HD 
updates the model by 1) adding the data hypervec-
tor to a class to which it belongs and 2) subtracting 
it from a class with which it was wrongly matched.

​Main​
{

​
​​  C​​ main​ 

c ​   = ​ C​ main​ 
c ​  + H,  where ​C​ main​ 

c ​   is  correct
​    

​​  C​​ main​ 
w ​   = ​ C​ main​ 

w ​  − H,  where ​C​ main​ 
w ​   is  wrong

 ​​​

We similarly update two corresponding hypervectors 
in the category stage by adding and subtracting the 
query hypervector. 

​Category​
{

​
​​  C​​ 

category
​ c ​   = ​ C​ 

category
​ c ​  + H,  where ​ C​ 

main
​ c ​   ∈ ​ C​ 

category
​ c ​
​    

​​  C​​ 
category

​ w ​   = ​ C​ 
category

​ w ​  − H,  where  ​C​ 
main

​ w ​   ∈ ​ C​ 
category

​ w ​
 ​​​

The model adjustment needs to be continued 
for a few iterations until the HD accuracy stabilizes 
over the validation data, which is a part of the train-
ing data set. After training and adjusting the model 
offline, it can be loaded onto embedded devices to 
be used for inference.

Inference: The proposed approach works very 
similarly to the baseline HD computing, except 
there are two stages now. First, we check the sim-
ilarity of a query hypervector in the category stage. 
A category hypervector with the highest cosine 
similarity is selected to continue the search in the 
main stage.

Here, we check the similarity of the query hyper-
vector against the classes within the selected cate-
gory. For example, in Figure 2c, if group 2 had the 
highest cosine similarity with the query hypervector, 
then only the green class hypervectors are selected 
for search in the main stage. Finally, a class with 
the highest cosine similarity in the main stage is 
selected as the output class. This approach reduces 
the number of required operations. For an applica-
tion with k classes, our approach reduces the num-
ber of required similarity checks from k to k/m + m 
hypervectors. For example, for an application with 
k = 16 and m = 4, the number of required operations 
is reduced by a factor of 2.

Evaluation

Experimental setup
We perform HD training and retraining using 

C++ implementation on Intel Core i7 processor 
with 16-GB memory (4 core, 2.8 GHz). We describe 
the inference functionality using RTL System-Ver-
ilog and use standard digital ASIC flow to design 
dedicated hardware. For the synthesis, we use 
Synopsys Design Compiler with the Taiwan Semi-
conductor Manufacturing Company (TSMC) 45-nm 
technology library and the general purpose pro-
cessor with high-VTH cells. We extract the design 
switching activity using ModelSim, and measure 
the power consumption of HD designs using Synop-
sys Prime-Time at the (1 V, 25 °C, TT) corner.
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We test the efficiency of the proposed approach 
on the following three practical applications:

Speech Recognition (ISOLET) [10]: Recognize 
voice audio of the 26 letters of the English alphabet. 
The training and testing data sets are taken from 
the Isolet data set. This data set consists of 150 sub-
jects speaking each letter of the alphabet twice. The 
speakers are grouped into sets of 30 speakers. The 
training of hypervectors is performed on Isolet 1, 2, 
3, 4, and tested on Isolet 5.

Activity Recognition (UCIHAR) [11]: Detect 
human activity based on three-axial linear acceler-
ation and three-axial angular velocity that has been 
captured at a constant rate of 50 Hz. The training and 
testing data sets are taken from the Human Activity 
Recognition data set. This data set contains 10,299 
samples, each with 561 attributes.

Image Recognition (IMAGE) [12]: Recognize 
hand-written digits 0 through 9. The training and 
testing data sets are taken from the Pen-Based Rec-
ognition of Handwritten Digits data set. This data set 
consists of 44 subjects writing each numerical digit 
250 times. The samples from 30 subjects are used for 
training and the other 14 are used for testing.

Accuracy
In this section, we study the impact of quantiza-

tion and two-level search classification accuracy. 
Table 1 shows the HD classification accuracy for 
four different configurations when we categorize 
the class hypervectors into groups of m = 1 to 4. The 
configuration m = 1 is the baseline HD, where we do 
not have any grouping. HD in m = 2 configuration is 
where each group consists of two class hypervec-
tors. This generates k/m hypervectors in the cate-
gory stage. Our evaluation shows that grouping has 
a minor impact on classification accuracy (0.6% 
on average). HD classification accuracy is also a 
weak function of grouping configurations. How-
ever, the number of hypervectors in the category 
stage affects the number of computations needed 

for inference. Therefore, we choose the grouping 
approach that minimizes the number of required 
operations for a given application. For example, for 
activity recognition with k = 12 classes, the grouping 
with m = 4 results in maximum efficiency since it 
reduces the number of effective hypervectors from 
k = 12 to k/m + m = 7.

Table 1 also shows the HD classification accu-
racy for two types of quantization. Our results show 
that HD on an average loses 3.7% in accuracy when 
quantizing the trained model values to the power 
of two  values (2i). However, quantizing the val-
ues to 2i + 2j values enables HD to provide similar 
accuracy to HD with integers with less than 0.5% 
error. This quantization results in 2.2× energy effi-
ciency improvement and 1.6× speedup by mode-
ling the multiplication with two shifts and a single 
add operation.

Efficiency
The goal is to have HD to be small and scalable 

so that is can be stored and processed on embedded 
devices with limited resources. In the conventional 
HD, each class is represented using a single hyper-
vector. We address this issue by grouping classes 
together, which significantly lowers the number of 
computations, and with quantization, which removes 
costly multiplications from the similarity check.

 
Table 1. Classification accuracy of HD with integer (baseline) and quantized model.

Figure 3. Energy consumption and execution time 
of HD using proposed optimization approaches.
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Figure 3 compares the energy consumption and 
execution time of the proposed approach with 
the baseline HD computing during inference. We 
reported results such that the reader can see the 
impact of different optimizations. To have a fair 
comparison, the baseline HD uses the same encod-
ing and number of retraining iterations as the pro-
posed design. Our evaluation shows that grouping 
of class hypervectors can achieve on an average 
5.3× energy efficiency improvement and 4.9× faster 
as compared to the baseline HD using cosine sim-
ilarity. In addition, quantization (2i + 2j ) of class 
elements can further improve the HD efficiency 
by removing costly multiplications. Our evalua-
tions show that HD enhancing with both grouping 
and quantization achieves 11.6× energy efficiency 
and 8.3× speedup as compared to baseline HD 
using cosine while providing similar classification  
accuracy.

HD computing is a promising solution to per-
forming lightweight classification tasks; however, 
HD is computationally expensive when work-
ing with applications that have large numbers of 
classes. In this article, we proposed three novel 
approaches to reduce the HD computation cost 
during inference. Our first approach simplifies 
cosine similarity operations to dot product oper-
ations by caching class hypervector magnitudes. 
Our second approach reduces the number of com-
putations during inference by grouping the class 
hypervectors and performing the similarity check 
in two stages. Our third approach quantizes the 
HD trained model and removes costly multiplica-
tions from the similarity check. Using the proposed 
approach enables us to exploit HD as a lightweight 
classifier for computing on the edge, such as on 
small embedded devices.� 
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